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Fig. 1: Overview. We present SOFAR, the first system to incorporate object orientation into spatial reasoning and robotic
manipulation. We introduce the concept of Semantic Orientation, which refers to natural language-grounded object orientations,
such as the “cutting” direction of a knife or the “handle” direction of a cup. To support this, we construct OrienText300K, a
large-scale dataset of object-text-orientation pairs. SOFAR enables accurate 6-DoF object understanding and excels in tasks
such as visual question answering, object manipulation, and navigation.

Abstract—Spatial intelligence is a critical component of em-
bodied AI, promoting robots to understand and interact with
their environments. While recent advances have enhanced the
ability of VLMs to perceive object locations and positional
relationships, they still lack the capability to precisely understand
object orientations-a key requirement for tasks involving fine-
grained manipulations. Addressing this limitation not only requires
geometric reasoning but also an expressive and intuitive way to
represent orientation. In this context, we propose that natural
language offers a more flexible representation space than canonical
frames, making it particularly suitable for instruction-following
robotic systems. In this paper, we introduce the concept of

semantic orientation, which defines object orientations using
natural language in a reference-frame-free manner (e.g., the
“plug-in” direction of a USB or the “handle” direction of a
knife). To support this, we construct OrienText300K, a large-
scale dataset of 3D models annotated with semantic orientations
that link geometric understanding to functional semantics. By
integrating semantic orientation into a VLM system, we enable
robots to generate manipulation actions with both positional and
orientational constraints. Extensive experiments in simulation
and real world demonstrate that our approach significantly
enhances robotic manipulation capabilities, e.g., 48.7% accuracy
on Open6DOR and 74.9% accuracy on SIMPLER.
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I. INTRODUCTION

Open-world spatial intelligence is crucial for embodied
AI, as a robot must understand not only “what” an object
is but also its precise “where” for effective interaction. To
this end, vision-language-models (VLMs) [1, 30, 68, 79]
with spatial understanding [10, 12, 15] that comprehend
spatial concepts [70, 142] and relationships [41, 66, 135] have
been built. These models incorporate spatial knowledge into
their architecture design or training data, enabling them to
perform tasks such as distinguishing left from right [12, 15],
counting objects [10, 33], and even planning for position-only
manipulations [10, 160]. Despite the remarkable achievements,
we ask: What is the missing cornerstone of such spatial
understanding? Given the original intent of “seeing is for
doing” [40], how can we push spatial understanding further?

We observe that current VLMs struggle with understanding
object orientation, making them insufficient for generic robot
manipulation planning. Consider some everyday scenarios:
inserting a pen into a pen holder, righting a tilted wine
glass, or plugging a cord into a power strip. Previous ap-
proaches [10, 12, 15] primarily focused on understanding
“where is the pen” or “where is the wine glass” while ignoring
their orientations, making them insufficient for accomplishing
these seemingly simple object manipulation tasks.

More importantly, different orientations of an object hold
varying semantic significance. The capability of connecting
specific orientations to their semantic meanings is essential for
language-guided robot manipulations. For example, inserting
a pen into a pen holder requires aligning the pen tip with
the direction of the pen holder’s opening; righting a wine
glass necessitates aligning the glass’s top with the z-axis
in the world coordinate frame; and plugging into a power
strip involves understanding the “insertion” direction, which is
perpendicular to the power strip’s surface. However, translating
a specific language description into a desired object orientation
is challenging for existing VLMs.

To move forward, we introduce language-grounded orienta-
tion that bridges spatial reasoning and object manipulation,
characterized by the following:

• From Position Awareness to Orientation Awareness.
While prior works [10, 12, 15] emphasize position re-
lationship, orientation understanding is equally critical
for defining the full six degrees of freedom (6-DoF) of
object or end-effector poses [18, 34, 71, 141, 146, 158].
Orientation awareness involves understanding object orien-
tations and their relationships in the open world, enabling
robots to complete tasks requiring precise alignment and
rearrangement together with position awareness.

• From Orientation to Semantic Orientation. Traditional
orientation, defined relative to a base frame or template
model [18, 67, 122, 141, 146], is insufficient for open-
world manipulation guided by language instructions [57,
119, 127]. We introduce semantic orientation, linking
orientational vectors of an object to open-vocabulary
prompts (e.g., the “handle” direction of a knife or “plug-in”

direction of a USB). This bridges geometric reasoning
with functional semantics, enabling robots to interpret
task-specific orientation changes.

Achieving such spatial awareness requires addressing two
key challenges: acquiring semantic orientation knowledge in
the open world and integrating it with VLMs. To tackle the
first, we propose PointSO, a generalizable cross-modal 3D
Transformer [29, 107, 109, 134], which serves as a robust
and versatile framework for open-world spatial orientation
understanding. To train PointSO effectively, we construct
OrienText300K, a large-scale orientation-text paired dataset
curated from internet sources. This dataset, devoid of expensive
robot data, is automatically labeled by prompting GPT-4o [100]
with extensive and diverse language-grounded semantic orien-
tation queries. These queries encompass intra-object spatial
understanding and inter-object interaction-related semantics,
such as manipulation orientations. OrienText300K comprises
over 350K 3D models of diverse everyday objects. Powered by
OrienText300K, PointSO can reliably infer semantic orientation
for an arbitrary object without being restricted to a known
category or instance.

We further develop an integrated reasoning system, SOFAR,
to coordinate our proposed PointSO and existing position
foundation models for achieving more comprehensive spatial
understanding, where Florence-2 [147] and SAM [65] handle
the object positions, while our PointSO focuses on understand-
ing and outputting orientations complimentary. Specifically, we
parse an input RGB-D observation as an orientation-aware 3D
scene graph using SAM-segmented object point clouds and
our PointSO. The RGB-D observation, together with the scene
graph, is then input to the VLM, which outputs a chain-of-
thought [140] spatial reasoning for both position and orientation
commands. These commands can then serve as visual planning
outcomes to support robotic manipulation tasks.

To assess our system, we introduce Open6DOR V2, a large-
scale robot manipulation benchmark designed for 6-DoF object
rearrangement in simulation. This benchmark demands robust
positional and orientational reasoning in open-world settings
and supports both open-loop and closed-loop robotic control.
Our experiments demonstrate that our system considerably out-
performs state-of-the-art vision-language models and popular
vision-language-action (VLA) models—even those trained with
extensive and costly robot trajectories. These performance gains
are also observed in real-world experiments. Additionally, we
establish a new spatial visual-question-answering benchmark,
that confirms the system’s exceptional open-world spatial
reasoning capabilities.

In summary, our contributions are fourfold. First, we
introduce PointSO, an orientation base model that infers
the semantic directions of novel objects in an open-world
context. Second, we curate OrienText300K, a large-scale 3D
model dataset annotated with semantic directions to support
the training of orientation models. Third, we develop an
integrated system that enhances powerful VLMs with advanced
spatial understanding, facilitating robot manipulations that
require both positional and orientational spatial knowledge.
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Fig. 2: Data Construction of OrienText300K.

Fourth, we establish 6-DoF SpatialBench & Open6DOR V2, an
orientation-aware spatial visual-question-answering benchmark
and a comprehensive robot manipulation benchmark designed
to evaluate both open-loop and closed-loop open-world 6D
rearrangement strategies. Extensive experiments demonstrate
the superior performance of our method together with a series
of perception and robot manipulation benchmarks.

II. SEMANTIC ORIENTATION: CONNECTING LANGUAGE
AND OBJECT ORIENTATION

A. Definition of Semantic Orientation

Traditionally, the orientation of an object is defined within a
reference frame, using quaternions or Euler angles to represent
relative rotations. Intuitively, object orientations commonly
correspond to some specific semantics in most interactive
behaviors. This aligns with the fact that humans typically
understand an object’s orientation in a more semantic, reference-
free way. For instance, when plugging a plug into a charger,
we accomplish the action of “plugging in” by matching the
metal prongs’ direction with the outward direction of the
charger’s socket. Drawing on this observation, we define an
object’s Semantic Orientation as follows. Given an object X
and a description ℓ, the corresponding semantic orientation
sXℓ ∈ S(2) is an object-centric direction represented as a unit
vector semantically matching the description ℓ.

sXℓ = F(X, ℓ). (1)

ℓ is an open-vocabulary language description that should have
a clear semantic correspondence to a general orientation (e.g.,
front, top), an object part (e.g., handle, cap), or a specific
manipulation goal (e.g., pour out, plug-in).

For an object X , it may have multiple semantic orientations
corresponding to different functions or attributes via changing
the language description ℓ, forming a semantic orientation set
SX = {sXℓ1 , s

X
ℓ2
, . . . , sXℓn}. Based on this set, the rotation of X

can be characterized by transforming its semantic orientations.

B. Robotic Manipulation via Semantic Orientation

Semantic orientations are powerful representations that help
characterize various orientation-related knowledge. What relates
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Fig. 3: OrienText300K data filtering and annotating ac-
curacy on human-labeled validation sets. SO denotes the
annotation quality for semantic orientation. All VLMs achieve
high accuracy and GPT-4o consistently yields the best result.

most to robot manipulation is the knowledge of object reorien-
tation. Given an initial observation of an object X and a task
command c that specifies the desired reorientation, semantic
orientations can be used to determine the necessary object
rotation. First, we identify task-related semantic orientation
descriptions {lc} from the task command c whose desired
directions are clearly outlined in the command. For instance,
a command such as “turn a bottle over and put it on the
ground” necessitates identifying the “up direction of the bottle”
as a semantic orientation, with the desired direction being
(0, 0,−1) in a world coordinate system where the z-axis is
perpendicular to the ground. Then, by extracting the semantic
orientations from the initial observation X and calculating the
rotation needed to align these with the desired directions, we
can effectively determine how the object should be reoriented.

Beyond object reorientation, semantic orientations can be
linked to traditional instance-level and category-level orienta-
tions, and even facilitate cross-category orientation. Specifically,
by orthogonalizing a set of semantic orientations, we can
establish reference frames that define instance-level orientations
for individual objects. For objects within the same category,
using a consistent set of linguistic descriptions aligns their
semantic orientation sets, resulting in category-level consistent
references from which category-level orientations can be
derived. Moreover, applying the same linguistic descriptors
across different categories creates cross-category consistent
semantic orientation sets, enabling the derivation of cross-
category reference frames. Thus, our approach builds orienta-
tion understanding on semantic orientations, with an emphasis
on learning to estimate these directions for open-world objects
based on open-ended descriptions.

C. OrienText300K: Orientation-Text Paired Data at Scale

Our goal is to learn an orientation model on a large-scale
3D model dataset so that it can identify semantic orientations
in open-world scenarios. To achieve it, we first introduce
OrienText300K, a newly curated 3D model dataset with diverse
and extensive semantic orientation labels for training our
language-conditional orientation model.
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1) Scalability Analysis: Before discussing the data curation
process, it is important to note that semantic orientations
are typically defined within the six standard orthogonal
views of an object from a canonical setup. For example, the
orientation for placing a pen into a pencil holder is opposite
to the holder’s upright direction. Object canonicalization often
involves specifying the up and front directions of an object.
Fortunately, most 3D models available in web datasets are
already canonicalized, except for potential axis flipping. Based
on this observation, we propose to scale up the semantic
orientation annotations by leveraging readily available web
3D datasets with automatic labeling using GPT. Specifically,
we can use the six orthogonal directions as candidates and
generate descriptions from rendered multi-view images. This
associates various language descriptions with salient directions
on objects, providing the supervision needed for learning an
orientation model.

2) Data Source: To scale up, we build the OrienText300K
dataset from Objaverse [22], which originally contains ∼800K
Internet 3D models across substantial categories. However, such
Internet data contains a lot of noisy annotations or low-quality
samples that cannot be used. Based on Blender, we carefully set
up the light and rendered more than 8M high-fidelity rendering
images.

3) Data Filtering: To clean the data that can better be used
for generating semantic orientation annotations, we first clean
the data by using a dedicated filtering strategy that filters data
to preserve samples that satisfy the following 6 requirements. ❶
Standard orthogonal view only. Samples in random views will
be filtered. ❷ Clean objects without the ground for auxiliary

visualization. ❸ Reasonable objects that have sufficient spatial
reasoning potentials. ❹ High-quality objects. Low-quality
objects such as blurry and wrong samples are filtered. ❺
Distinguishable objects. Abstract objects such as meaningless
solids are filtered. ❻ Non-scene objects. Samples that describe a
3D scene are filtered for object-centric understanding purposes.

However, it is non-trivial to conduct filtering on such big data
using manual labor. Inspired by recent works showing large
VLMs are human-aligned 2D or 3D image-based judgers [103,
143, 170], we employ GPT-4o [100] by prompting requirements
above. To be specific, the multi-view images of 3D objects are
concatenated together with our designed prompts into GPT-4o,
and GPT-4o will decide whether one sample should be filtered.
The filtered dataset yields 350K+ clean samples, significantly
reducing data noise.

4) Data Annotation: Like data filtering, we annotate Orien-
Text300K with semantic orientations using GPT-4o. GPT-4o
will take rendered object views as input and generate the
language description and one best-grounded direction from
the 6 standard orthogonal direction candidates. We render the
six standard orthogonal view images in Blender, which are
concatenated as input of GPT-4o. Besides, four 45-degree
oblique orthogonal views are rendered and concatenated as an
additional input, ensuring more robust annotation.

5) Quality Validation: To validate the accuracy of our
prompted GPT agents as the data filter and annotator, we
construct a validation set containing 208 samples with manu-
ally labeled filtering criteria and semantic orientation labels,
respectively. From Fig. 3, we observe that GPT-4o achieves an
average accuracy of 88.3% and 97.1% accuracy on filtering
and annotating, respectively. This provides a quality guarantee
of our OrienText300K.

D. PointSO: A Cross-Modal 3D Transformer for Semantic
Orientation Prediction

We introduce PointSO, a plain Transformer-based archi-
tecture [134] with cross-modal 3D-language fusion as our
orientation model. As illustrated in Fig. 4, PointSO takes the
object’s 3D point clouds and a language description as inputs,
and predicts the corresponding semantic orientation.

1) 3D and Language Embeddings: Given an object’s point
cloud X = {xi ∈ R3|i = 1, 2, . . . , N} with N 3D points
defined in (x, y, z) Cartesian space, and an arbitrary language
description ℓ, we first embed both into discrete token embed-
dings. For the 3D point clouds, we follow [29, 107, 159] to
first sample Ns seed points using farthest point sampling (FPS)
and then group inputs with KNN for point feature embedding
with a local geometric extraction network such as lightweight
PointNet [104, 105]. An MLP head is used which maps a
special [CLS] token [31] to a predicted direction. As for
the language inputs, we adopt OpenAI’s CLIP [115] and use
the global token as cross-modal fusion inputs. Like Vision
Transformer [31], we explore three model configurations, i.e.,
small, base, and large versions. Each configuration is of a
different number of Transformer layers, dimensions, and CLIP
models, detailed in the Appendix B.
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2) Cross-Modal Fusion: We adopt a dense layer-wise feature
fusion strategy by injecting the global text features into the
Transformer layers of the 3D Transformer, where a cross-modal
fusion is conducted. Generally, this fusion operation can be
implemented in various fashions such as cross-attention, adapter,
or concatenating features along spatial/channel dimensions.
Empirically, however, we find that the sum of the text token
to every point token is the most simple but effective solution
(see Appendix H2). This may be due to the relatively short
length of the languages, where a per-token sum enhances
attention to languages.

3) Optimization: Let FSO represent the PointSO model
parameterized by θSO (the CLIP is kept frozen and thus its
parameters are not included). Given every object point cloud
Xi ∈ DOrienText300K in the OrienText300K dataset, where each
object is labeld with a language set Li = {ℓij , j = 1, 2, . . . , Q}
and the corresponding ground truth semantic orientation set,
Si = {sij , j = 1, 2, . . . , Q}. The optimization is to minimize
the negative cosine similarity Lcos(v,k) = 1− v·k

∥v∥·∥k∥ between
predicted and the ground truth semantic orientations:

min
θSO

∑
Xi∈DOrienText300K

∑
ℓij∈Li

Lcos

(
FSO(Xi, ℓ

i
j), s

i
j

)
. (2)

III. SOFAR: SEMANTIC ORIENTATION BRIDGES SPATIAL
REASONING AND OBJECT MANIPULATION

Our proposed PointSO model now paves the off-the-shelf
for object-centric spatial orientation understanding. However,
it is still unclear how to leverage such object-centric spatial
understanding for scene-level spatial reasoning both in the
digital world (e.g., orientation-aware visual question answering,
VQA) and in the physical world (e.g., robot manipulations).
To enable such applications, we build an integrated reasoning

system where a powerful VLM acts as an agent and reasons
about the scene while communicating with off-the-shelf models
including PointSO and SAM [65]. Fig. 5 illustrates an overview
of our proposed framework, aiming at Semantic Orientation
For Autonomous Robotic manipulation (SOFAR). SOFAR con-
sumes an RGB-D image and a language query as input and first
leverages off-the-shelf models including SAM and PointSO to
convert the image into an orientation-aware 3D scene graph.
Then SOFAR leverages a VLM agent to produce planning
outcomes based upon the scene graph and the input language
query, which can be later used for robot manipulation. We will
introduce the construction of the orientation-aware 3D scene
graph in Section III-A and how to perform spatial-aware task
reasoning and plan for robot manipulation in Section III-B.

A. Orientation-Aware Scene Graph from RGB-D

To convert the input RGB-D image into an orientation-aware
3D scene graph, we first segment the RGB image to obtain
object-level 3D point clouds using SAM [65] and then construct
a scene graph with object-attribute nodes.

1) Task-Oriented Object Segmentation: Given a language
query Q, we first prompt a VLM model FVLM to abstract the
task-oriented object phrase set. Thus, a set P = {pi|i =
1, 2, . . . ,M} with M object phrases in language will be
generated from Q. With set P , we use language-conditioned
object segmentation with SAM to obtain an object set X =
{Xi|i = 1, 2, . . . ,M}, where Xi is the 3D point cloud of
the i-th object. Besides, we assign individual IDs to objects
which are used for Set-of-Mark (SoM) prompting [151] on
VLM’s image input. Next, we prompt the VLM to generate
every object’s corresponding task-oriented language description
set Li. We predict the semantic orientation using pretrained
PointSO for each description in the description set Li, forming
the semantic orientation set Si for the i-th object.
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Fig. 6: Qualitative results of real world language-grounded manipulation. SOFAR doesn’t require any robotic data training or
human annotation of task-specific prompts, and it can generalize across various embodiments, tasks and environments.



TABLE I: 6-DoF object rearrangement evaluation on Our Proposed Open6DOR V2 Benchmark.

Method
Position Track Rotation Track 6-DoF Track

Time Cost (s)
Level 0 Level 1 Overall Level 0 Level 1 Level 2 Overall Position Rotation Overall

Perception Tasks on Issac Sim [95]

GPT-4V [98] 46.8 39.1 45.2 9.1 6.9 11.7 9.2 - - - -
Dream2Real [62] 17.2 11.0 15.9 37.3 27.6 26.2 31.3 26.2 18.7 13.5 358.3s
VoxPoser [54] 35.6 21.7 32.6 - - - - - - - -
Open6DOR-GPT [28] 78.6 60.3 74.9 45.7 32.5 49.8 41.1 84.8 40.0 35.6 126.3 s
SOFAR-LLaVA 86.3 57.9 78.7 62.5 30.2 67.1 48.6 83.0 48.2 40.3 9.6s
SOFAR 96.0 81.5 93.0 68.6 42.2 70.1 57.0 92.7 52.7 48.7 8.5s

Execution Tasks on Libero [76]

Octo [126] 51.2 32.1 47.2 10.7 18.3 29.9 17.2 45.6 8.0 8.0 -
OpenVLA [64] 51.6 32.4 47.6 11.0 18.5 30.6 17.6 46.2 8.2 8.2 -
SOFAR 72.1 47.6 67.0 28.3 18.3 34.7 25.7 63.7 25.6 18.4 40s

2) Orientation-Aware 3D Scene Graph: From segmented
object set X , we construct an orientation-aware scene graph
G = (V,E) with M object nodes. Each node oi ∈ V consists
of following semantic and spatial attributes: ❶ object name
pi with an individual ID i that distinguishes instances; ❷
object position as 3D centroid coordinate ci = (x, y, z) ∈
R3 from segmented depth; ❸ object’s 3D bounding box size
bi = (h,w, l) ∈ R3; ❹ semantic orientation set Si and the
corresponding task-oriented language-description set Li. Each
edge eij ∈ E stores the relative translation and bounding box
size ratio between the connected two objects oi and oj .

B. Spatial-Aware Task Reasoning

We convert the orientation-aware scene graph G into de-
scriptive language and input this, along with the RGB image I
and query Q, into a VLM. With spatial knowledge accurately
encoded in the scene graph, the VLM can leverage its robust
image and language understanding capabilities to produce high-
quality spatial reasoning results.

1) Chain-of-Thought Spatial Reasoning: Since most of the
robot manipulation problems involving rigid bodies can be
abstract as changing the position and orientation of objects, we
especially focus on instructing the VLM to output a goal trans-
formation as the plan for robot manipulation. To realize this,
we use chain-of-thought (CoT) reasoning [140] that regularizes
the VLM to derive a transformation given a language-described
manipulation goal in 3 steps: i) scene analysis of the language
query Q and object nodes V; ii) manipulation analysis to
provide an analytical calculation process of the target object’s
desired position and orientation; iii) output task-desired object
position c̃i and semantic orientation set S̃i for each object.
Afterward, given each object’s initial position ci and semantic
orientation set Si, the 6-DoF transformation matrix Pi can be
derived. Specifically, the translation transformation ti = c̃i−ci,
and we solve the rotation transformation Ri from Si and S̃i

using Kabsch-Umeyama algorithm [60, 61, 132].
2) Low-Level Motion Execution: Similar to CoPa [51], our

model includes task-oriented grasping and task-aware motion
planning. We first segment the manipulated objects or parts

using Florence-2 [147] and SAM [65] to obtain the object point
cloud, and then we use GSNet [38] to generate grasp pose
candidates. We select the most effective grasp pose by balancing
the grasp score and the angle between the robot’s approaching
direction and the world frame’s z-axis. Conditioned on the text
instruction, SOFAR predicts the target object’s translation and
rotation matrix, which define the transformation from the grasp
pose to the placement pose. An open-source motion planning
module [121] is then used to generate a collision-free trajectory.
In addition, we set the initial joint position as the midpoint to
achieve smooth motion while reducing collisions between the
manipulated object and the environment.

IV. EXPERIMENTS

A. Benchmarks

We propose two benchmarks to demonstrate the effectiveness
of our SOFAR in spatial reasoning and robotic manipulation.

1) Open6DOR V2: For simulation experiments, we choose
the Open6DOR[28] Benchmark to comprehensively evaluate
our spatial understanding abilities. Beyond the perception tasks
that it originally proposes, we further construct an execution
track to enable comparison with close-loop policies. We name
the new combined benchmark Open6DOR V2.

• Perception tasks. In line with Open6DOR’s definition,
the model takes an RGB-D scene image along with a
language instruction as input and directly outputs the
translation and orientation of the target object.

• Execution tasks. We replicate Open6DOR scenes and
ground them into a robosuite simulation environment for
execution, excluding single-object scenes to better assess
the understanding of spatial relationships. The model takes
the RGB-D image with a language instruction as input
and completes the entire execution process. We build it
based on robosuite [173] and adopt the format established
by LIBERO [76]. Evaluation is conducted according to
the final position and orientation of the target object.

2) 6-DoF SpatialBench: To further evaluate spatial under-
standing that requires 6-DoF awareness, we propose a VQA



TABLE II: SimplerEnv [74] simulation valuation results for the Google Robot setup. We present success rates for the
“Variant Aggregation” and “Visual Matching” approaches. Top-1 & Top-2 accuracies are represented using different colors, bold
text, and underlines. OXE: Open X-Embodiment dataset [96].

Google Robot
Evaluation Setup Policy Training Data

Pick Coke Can Move Near Open / Close Drawer

Average
Horizontal

Laying
Vertical
Laying Standing Average Average Open Close Average

Variant
Aggregation

RT-1-X [96] OXE 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.397
RT-2-X [174] OXE 0.822 0.754 0.893 0.823 0.792 0.333 0.372 0.353 0.661
Octo-Base [126] OXE 0.005 0.000 0.013 0.006 0.031 0.000 0.021 0.011 0.012
OpenVLA [64] OXE 0.711 0.271 0.653 0.545 0.477 0.158 0.195 0.177 0.411

SOFAR Zero-Shot 0.861 0.960 0.901 0.907 0.740 0.200 0.394 0.297 0.676

Visual
Matching

RT-1-X [96] OXE 0.820 0.330 0.550 0.567 0.317 0.296 0.891 0.597 0.534
RT-2-X [174] OXE 0.740 0.740 0.880 0.787 0.779 0.157 0.343 0.250 0.606
Octo-Base [126] OXE 0.210 0.210 0.090 0.170 0.042 0.009 0.444 0.227 0.168
OpenVLA [64] OXE 0.270 0.030 0.190 0.163 0.462 0.194 0.518 0.356 0.277

SOFAR Zero-Shot 0.770 1.000 1.000 0.923 0.917 0.227 0.578 0.403 0.749

TABLE III: SimplerEnv [74] simulation evaluation results for the WidowX + Bridge setup. We report both the final success
rate (“Success”) along with partial success (e.g., “Grasp Spoon”). Top-1 & Top-2 accuracies are represented using different
colors, bold text, and underlines. OXE: Open X-Embodiment dataset [96]. Bridge: BridgeData V2 dataset [136].

Policy Training Data

Put Spoon Put Carrot Stack Green Block Put Eggplant

Average
on Towel on Plate on Yellow Block in Yellow Basket

Grasp
Spoon Success Grasp

Carrot Success Grasp
Green Block Success Grasp

Eggplant Success

RT-1-X [8] OXE 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000 0.011
Octo-Base [126] OXE 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431 0.160
Octo-Small [126] OXE 0.778 0.472 0.278 0.097 0.403 0.042 0.875 0.569 0.300
OpenVLA [64] OXE 0.041 0.000 0.333 0.000 0.125 0.000 0.083 0.041 0.010
RoboVLM [72] OXE 0.375 0.208 0.333 0.250 0.083 0.083 0.000 0.000 0.135
RoboVLM [72] Bridge 0.542 0.292 0.250 0.250 0.458 0.125 0.583 0.583 0.313
SpatialVLA [112] OXE 0.250 0.208 0.417 0.208 0.583 0.250 0.792 0.708 0.344
SpatialVLA [112] Bridge 0.208 0.167 0.292 0.250 0.625 0.292 1.000 1.000 0.427

SOFAR Zero-Shot 0.625 0.583 0.750 0.667 0.917 0.708 0.667 0.375 0.583

benchmark for spatial understanding evaluation, named 6-
DoF SpatialBench. Previous benchmarks [10, 15, 33, 124]
for assessing VLMs primarily focus on understanding spatial
positions, with little attention given to orientation. Additionally,
most assessments emphasize relative and imprecise spatial
relationships (e.g., “to the left,” “nearest”) while lacking
quantitative metrics. In contrast, 6-DoF SpatialBench focuses on
both positional and orientational understanding, encompassing
223 manual annotated samples, divided into the position
track and orientation track depending on the question. Each
task includes an RGB image of a scene and multiple-choice
questions with four options. Specifically, the tasks cover
numerical queries (e.g., counting), positional relationships (e.g.,
left / right), and orientation (the facing direction of an object).
The model needs to analyze the image and select the correct
answer from four options. All questions and ground-truth
answers are carefully designed through human annotation.

B. 6-DoF object rearrangement evaluation in Simulation

We conduct experiments on the proposed Open6DOR V2
benchmark, with results presented in Table I. In perception
tasks, we compare our results against the same baselines used in
the original Open6DOR [28] experiments. SOFAR outperforms
all baselines, demonstrating effective spatial understanding and
zero-shot generalizability. In the execution tasks, we record
the initial and final poses of the objects to evaluate execution
success. We use the original pretrained Octo [126] and the
LIBERO-finetuned OpenVLA [64] as baselines, conducting all
experiments in the same LIBERO environment where Open-
VLA was fine-tuned to minimize the domain gap. Despite this,
both Octo and OpenVLA show lower success rates, indicating
their poor generalizability. In contrast, SOFAR achieves about
40% success, even with a vanilla execution implementation.
It is worth noting that some of the objects are inherently
difficult to grasp, which significantly hampers execution success.
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Fig. 7: Quantitative evaluation of zero-shot real-world language-grounded rearrangement. We design 60 diverse real-world
tasks involving over 100 diverse objects (detailed in Table XIII). The Success (%) is obtained with 3 trials per task and method.

TABLE IV: Spatial comprehension evaluation on our pro-
posed 6-DoF SpatialBench. Depth-Esti: Use monocular depth
estimation methods like Metric3D [157] or Moge [138]. rel.:
Relative metric evaluation, abs.: Absolute metric evaluation.

Method Depth-Esti
Position Orientation

Total
rel. abs. rel. abs.

Blind Evaluation with Large Language Models

GPT-3.5-Turbo [9] ✗ 24.5 24.9 26.7 27.5 25.7
GPT-4-Turbo [99] ✗ 27.2 27.3 29.2 27.9 27.8

General Vision Language Models

LLaVA-1.5 [80] ✗ 30.9 24.5 28.3 25.8 27.2
GPT-4o-mini [100] ✗ 33.3 26.9 32.5 23.8 31.0
GPT-4V [98] ✗ 37.7 32.7 36.7 27.5 33.9
GPT-4o [100] ✗ 49.4 28.4 44.2 25.8 36.2

Vision Language Models with Spatial Awareness

SpaceLLaVA [12] ✗ 32.4 30.5 30.9 24.9 28.2
SpaceMantis [12] ✗ 33.6 29.2 27.2 25.0 28.9
SpatialBot [10] ✓ 50.9 21.6 39.6 22.9 32.7
RoboPoint [160] ✗ 43.8 30.8 33.8 25.8 33.5
SOFAR ✓ 59.6 33.8 54.6 31.3 43.9

We call for more robust execution policies and manipulation
strategies, such as prehensile grasping and adaptive techniques,
to demonstrate better performance on Open6DOR V2.

C. Zero-shot Object Manipulation Evaluation in Simulation

SIMPLER [74] is a suite of open-source simulated evaluation
environments designed for real-world robot manipulation setups.
SIMPLER provides a standardized platform for benchmarking
manipulation tasks, emphasizing reproducibility and alignment
with real-world scenarios. We conduct quantitative evaluations
of SOFAR’s zero-shot execution performance on Google
Robot tasks & Widow-X tasks and compare it to baselines
including Octo [126], OpenVLA [64] and more concurrent
works [72, 112]. The robot follows the planned trajectory
generated by the planning module, as described in Sec. III-B2,
to execute the task. Furthermore, leveraging the error detection

TABLE V: Semantic Orientation evaluation on our proposed
OrienText300K dataset test spilt.

Method 45° 30° 15° 5° Average

PointSO-S 77.34 74.22 67.97 60.94 70.12
PointSO-B 79.69 77.34 70.31 62.50 72.46
PointSO-L 81.25 78.13 72.66 65.63 74.42

TABLE VI: Zero-shot Semantic Direction evaluation of
robustness on OrienText300K test split. Single-View: ran-
domly select a camera viewpoint within the unit sphere and
generate a single viewpoint within the FoV on polar coordi-
nates. Jitter: Gaussian jittering with noise ϵ ∼ N (0, σ2)
and σ = 0.01. Rotate: random SO(3) rotation sampling over
X-Y-Z Euler angle (α, β, γ) ∼ U(−θ, θ) and θ = π. All: All
the corruptions.

Method
OrienText300K-C Variants

Single-View Jitter Rotate All

PointSO-S 72.66 76.56 73.43 67.19
PointSO-B 75.00 78.90 75.78 71.09
PointSO-L 76.56 81.25 77.34 74.22

and re-planning capabilities of VLMs [100, 125], we can make
multiple attempts following a single-step execution failure to
approximate achieve a closed-loop effect. For fairness, we
limit the maximum number of attempts to three. Detailed
visualizations and analyses are provided in the Appendix C. As
shown in Tables II and III, despite the training data for Octo and
OpenVLA including Google Robot tasks, SOFAR demonstrates
superior zero-shot performance compared to most baselines.

D. Zero-shot Real-world Manipulation

1) Hardware Setup: We set up a real-world tabletop envi-
ronment utilizing a Franka Panda robotic arm equipped with a
parallel gripper. For perception, we integrate a single RGB-D
camera (Intel RealSense D415) mounted on the end-effector.
The details of the environmental visualization and additional
real-world robot setup are provided in the Appendix A.
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Fig. 8: Realworld Orientation-Aware Navigation. We present both the third-person view and the egocentric view, annotating
the predicted orientation of the interacted objects.

2) Tasks and Evaluations: To comprehensively evaluate the
generalization of SOFAR, we design 60 diverse real-world
experimental tasks involving over 100 diverse objects. Fol-
lowing Open6DOR [28]. These tasks are categorized into three
tracks—position, orientation, and comprehensive & 6-DoF,
each with simple and hard levels. The position-simple track
focuses on basic spatial relationships (front/back/left/right),
while the position-hard track involves more complex spatial con-
cepts (between/center/customized). The orientation-simple track
targets object part orientations, whereas the orientation-hard
track requires precise angle judgments for upright or flipped
objects. Comprehensive tasks demand intricate instruction
understanding and long-horizon operations, and 6-DoF tasks
require simultaneous position and orientation control. Each task
is executed three times to ensure statistical reliability. Detailed
visualization and analysis are provided in the Appendix A.

3) Results: The quantitative results are shown in Fig. 7,
SOFAR outperform the baseline across all tracks, particularly
in the challenging orientation and comprehensive & 6-DoF
tasks. Meanwhile, SOFAR also utilizes the minimal planning
time overhead. In addition, SOFAR is not limited to a single
embodiment. In qualitative experiments, we also test different
embodiments, such as a dexterous hand and a suction cup, as
shown in Fig. 6. Additional robot setups and generalization
experiments are included in the Appendix A.

E. Visual Question Answer on 6-DoF SpatialBench

We evaluate SOFAR on our proposed 6-DoF SpatialBench, as
shown in Table IV. We choose several VLMs and comparable
methods as baselines. SOFAR achieves superior performance
across both position-track and orientation-track, outperforming
baselines by over 18%.

F. Semantic Orientation Prediction

Using free-text descriptions to extract semantic orientations
from object point clouds is challenging. In Objaverse [22],
we manually annotate 128 diverse objects and form an
OrienText300K test split to evaluate the directional accuracy
of PointSO. We trained different model variants on Orien-
Text300K, and the results in Table V, report varying accuracies

between 45° ∼ 5°. In the real world, acquiring complete point
clouds is difficult even impractical. To assess the robustness,
we introduce random rotations, single-sided point clouds, and
Gaussian noise. The accuracy at 45°, as shown in Table VI,
demonstrates the model’s performance under these conditions.

G. Additional Applications

1) Cross Embodiedment Generalization: Our approach
determines grasp poses by generating masks and plans the
target pose and transformation using our PointSO and large
language model. It does not rely on trajectory data specific to
any robotic arm, making SOFAR embodiment-agnostic. Fig. 6
illustrates the diverse embodiments employed in our real-world
experiments. Leveraging the GSNet [137] algorithm based
on LeapHand [116], we perform 6-DoF object manipulation
experiments on dexterous hands. We conduct three position-
related and three rotation-related experiments. Leveraging
the PointSO and large language models, SOFAR is capable
of performing complex 6-DoF manipulation tasks, such as
“Upright the fallen wine glass and arrange it neatly in a row
with the other wine glasses.”

2) Long Horizon Planning & Close-Loop Execution: Similar
to ReKep [56], SOFAR leverages VLMs [100, 125] to perform
long-horizon decomposition of complex tasks and employs dual-
system VLMs [100, 125] to determine the success of execution
between tasks and subtasks, enabling closed-loop execution.
When a discrepancy between the results and expectations
is detected, SOFAR re-percepts and re-executes the current
subtask. Detailed visualization and analysis can be found
in Appendices C and D.

3) Orientation-Aware Robotic Navigation: Semantic ori-
entation can not only be applied to manipulation tasks but
also to robotic navigation tasks. As shown in Fig. 8, we
conduct experiments using a robotic dog for orientation-
aware robotic navigation tasks. Unlike traditional navigation
approaches, the dog is required to face a specific direction
during navigation. This orientation-aware constraint enhances
the navigation process by ensuring precise alignment with the
desired orientation, thereby improving task performance in
scenarios where directionality is critical.



V. RELATED WORKS

A. Vision-Language Models for Spatial Understanding

Vision-Language Models(VLMs) are rapidly being developed
in research community, driven by the storming lead in extending
GPT-style [9, 113, 114] Large Language Models (LLMs) like
LLaMA [130, 131] to VLMs [1, 4, 23, 30, 32, 79, 80, 123,
129, 165, 167]. SpatialVLM [12] pioneers this direction by
constructing VQA data in spatial understanding from RGB-
D, which is used for training an RGB-only VLM. Following
SpatialVLM, SpatialRGPT [15] extends RGB-based spatial
understanding to RGB-D by constructing spatial understanding
data using 3D scene graphs. SpatialBot [10] explores RGB-D
spatial reasoning through hierarchical depth-based reasoning.
Some other works propose visual prompting for improving
GPT-4V’s spatial understanding [77, 88, 151]. Meanwhile,
another line of works explores VLMs using 3D representations
such as point clouds for 3D scene [42, 50] and object-
centric [109, 110, 149] understanding. Despite the remarkable
progress, these works are limited in 3-DoF understanding which
is not actionable. In contrast, we explore spatial understanding
in 6-DoFs from RGB-D via VLMs. Unlike vanilla 3D scene
graphs used by SpatialRGPT for data construction, we propose
orientation-aware 3D scene graphs realized by our proposed
PointSO. In addition, we formulate spatial understanding as
graph learning, where the scene graph nodes are directly input
during inference.

B. Language-Grounded Robot Manipulation

Language-grounded robot Manipulation adopts the human
language as a general instruction interface. Existing works can
be categorized into two groups: i) End-to-end models like RT-
series [5, 8, 174] built upon unified cross-modal Transformers
with tokenized actions [7, 45, 73, 78, 92, 117, 168], large vision-
language-action (VLA) models built from VLMs [64], or 3D
representations [13, 160, 169]. Training on robot data such
as Open X-Embodiment [96] and DROID [63], a remarkable
process has been made. However, the data scale is still limited
compared to in-the-wild data for training VLMs. ii) Decoupled
high-level reasoning and low-level actions in large VLMs
and small off-the-shelf policy models, primitives [39, 51, 53–
55, 57, 59, 75, 90, 94, 153, 161], or articulated priors [52, 71].
Our SOFAR lies in this group, where an open-world generaliza-
tion property emerges from VLMs and our proposed PointSO
empowered by orientation-aware spatial understanding.

VI. LIMITATIONS

One notable limitation for decoupled systems like SOFAR is
that the execution may fail due to a sub-module error, i.e., robots
may place target objects with an error transformation because of
unstable grasping or inaccurate visual perception. For example,
the pen will be placed in an unexpected pose due to the rotation
during execution. Future works include integrating scalable
data and more advanced models and exploring the potential
of combining end-to-end and such decoupled methods, and
expanding SOFAR to more applications.

VII. CONCLUSIONS

In this paper, we propose semantic orientation, a language-
grounded representation that defines object orientations via
intuitive descriptors (e.g., “plug-in direction”), bridging geo-
metric reasoning and functional semantics. To enable this,
we introduce OrienText300K, a large-scale dataset of 3D
models annotated with semantic orientation. Through PointSO
and the integrated SOFAR system, we significantly enhance
robotic manipulation capabilities, as demonstrated by strong
performance in both simulated and real-world experiments.
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Aurélien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. Llama: Open and efficient
foundation language models. CoRR, abs/2302.13971,
2023. 11, 27

[131] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
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APPENDIX

APPENDIX A
ROBOT SETUPS

A. Simulation Robot Setups

To ensure fairness, we utilize the same Franka Panda arm
for evaluations in both the LIBERO [76] and our Open6DOR
V2 benchmarks. For SIMPLER [74], we use the Google Robot
exclusively to conduct the baseline experiments, adhering to all
configurations outlined in SIMPLER, as presented in Table II.

B. Real World Robot Setups

As for manipulation tasks, in Fig. 9, we perform 6-DoF
rearrangement tasks using the Franka Panda equipped with
a gripper and the UR robot arm with a LeapHand, while
articulated object manipulation is conducted using the Flexiv
arm equipped with a suction tool. All the robot arms mount a
Realsense D415 camera to its end for image capturing.

UR5e Franka Flexiv Leaphand

Fig. 9: The robots used in our real-world experiments.

In Fig. 10, we present the workspace and robotic arm for
real-world 6-DoF rearrangement. Unlike Rekep [56], CoPa [51]
et al., we utilize only a single RealSense D415 camera. This
setup significantly reduces the additional overhead associated
with environmental setup and multi-camera calibration, and it
is more readily reproducible.

Franka 
PandaSingle 

RealSense
D415

Fig. 10: 6-DoF rearrangement robot setup.
As for navigation tasks, we provide a visualization of our

robotic dog in Fig. 11. Following Uni-Navid [162], our robotic
dog is Unitree GO2 and we mount a RealSense D455 camera
on the head of the robotic dog. Here, we only use the RGB

RealSense D455

LiDAR-L1

Portable Wi-Fi

Fig. 11: Navigation robot setup. We use Unitree GO2 as our
embodiment, and we mount RealSense D455, a portable Wi-Fi
and a LiDAR-L1. Note that, our model only takes RGB frames
as input. The portable Wi-Fi is used for communication with
the remote server and the Lidar is used for the local controller
API of Unitree Dog.

frames with a resolution of 640 × 480 in the setting of 90◦

HFOV. We also mount a portable Wi-Fi at the back of the robot
dog, which is used to communicate with the remote server
(send captured images and receive commands). Unitree GO2
is integrated with a LiDAR-L1, which is only used for local
motion planning.

APPENDIX B
ADDITIONAL EXPERIMENTS

A. Articulated Objects Manipulation Evaluation

We further integrate SOFAR with articulated object manipu-
lation, as illustrated in Table VII, and evaluate its practicality in
robotic manipulation tasks using the PartNet-Mobility Dataset
within the SAPIEN [145] simulator. Our experimental setup
follows ManipLLM [71], employing the same evaluation
metrics. Specifically, we directly utilize the segmentation
centers provided by SAM as contact points, leverage PointSO
to generate contact directions, and use VLM to determine sub-
sequent motion directions. The results demonstrate significant
improvements over the baseline. Notably, our model achieves
this performance without dividing the data into training and
testing sets, operating instead in a fully zero-shot across most
tasks. This underscores the robustness and generalization of
our approach.

B. Spatial VQA on EmbSpatial-Bench [33] & SpatialBot-
Bench [10]

To further demonstrate SOFAR’s spatial reasoning capabili-
ties, we conducted Spatial VQA tests within the EmbSpatial-
Bench [33] and SpatialBot-Bench [10]. As shown in Tables VIII
and IX, SOFAR significantly outperformed all baselines, achiev-
ing more than a 20% performance improvement in EmbSpatial-
Bench.

C. Close-Loop Execution Experiment

We demonstrate the closed-loop replan capabilities of
SOFAR within Simpler-Env [74] in Fig. 12. The instruction



TABLE VII: Zeroshot articulate object manipulation evaluation within the SAPIEN [145] simulator using PartNet-Mobility
Dataset. Notably, while the baseline methods use distinct training and testing splits, our model achieves robust performance
without fine-tuning on the SAPIEN samples.

Method

Where2Act [93] 0.26 0.36 0.19 0.27 0.23 0.11 0.15 0.47 0.14 0.24 0.13 0.12 0.56 0.68 0.07 0.40
UMPNet [150] 0.46 0.43 0.15 0.28 0.54 0.32 0.28 0.56 0.44 0.40 0.10 0.23 0.18 0.54 0.20 0.42

FlowBot3D [35] 0.67 0.55 0.20 0.32 0.27 0.31 0.61 0.68 0.15 0.28 0.36 0.18 0.21 0.70 0.18 0.26
Implicit3D [171] 0.53 0.58 0.35 0.55 0.28 0.66 0.58 0.51 0.52 0.57 0.45 0.34 0.41 0.54 0.39 0.43
ManipLLM [71] 0.68 0.64 0.36 0.77 0.43 0.62 0.65 0.61 0.65 0.52 0.53 0.40 0.64 0.71 0.60 0.64

SOFAR 0.75 0.88 0.43 0.85 0.60 0.54 0.75 0.49 0.58 0.72 0.69 0.42 0.70 0.81 0.58 0.63

Method AVG AVG

Where2Act [93] 0.13 0.18 0.13 0.40 0.26 0.18 0.35 0.38 0.28 0.05 0.21 0.17 0.20 0.15 0.15 0.21
UMPNet [150] 0.22 0.33 0.26 0.64 0.35 0.42 0.20 0.35 0.42 0.29 0.20 0.26 0.28 0.25 0.15 0.28

FlowBot3D [35] 0.17 0.53 0.29 0.42 0.37 0.23 0.10 0.60 0.39 0.27 0.42 0.28 0.51 0.13 0.23 0.32
Implicit3D [171] 0.27 0.65 0.20 0.33 0.46 0.45 0.17 0.80 0.53 0.15 0.69 0.41 0.31 0.30 0.31 0.41
ManipLLM [71] 0.41 0.75 0.44 0.67 0.59 0.38 0.22 0.81 0.86 0.38 0.85 0.42 0.83 0.26 0.38 0.54

SOFAR 0.35 0.68 0.62 0.73 0.64 0.68 0.45 0.90 0.77 0.55 0.79 0.48 0.80 0.56 0.44 0.64

TABLE VIII: Zero-shot performance of LVLMs in EmbSpatial-
Bench [33]. Bold indicates the best results.

Model Generation Likelihood

BLIP-2 [69] 37.99 35.71
InstructBLIP [20] 38.85 33.41
MiniGPT4 [172] 23.54 31.70
LLaVA-1.6 [79] 35.19 38.84

GPT-4V [98] 36.07 -
Qwen-VL-Max [3] 49.11 -
SOFAR 70.88 -

TABLE IX: Zero-shot performance of LVLMs in Spa-
tialBotBench [10]. SpatialBot-3B: SpatialBot-Phi2-3B-RGB,
SpatialBot-8B: SpatialBot-Llama3-8B-RGB.

Model Pos Exist Count Reach Size Avg

ChatGPT-4o [100] 70.6 85.0 84.5 51.7 43.3 67.0
SpatialBot-3B [10] 64.7 80.0 88.0 61.7 28.3 64.5
SpatialBot-8B [10] 55.9 80.0 91.2 40.0 20.0 57.4

SOFAR 76.5 87.5 80.0 57.5 40.0 68.3

for both tasks is “pick the coke can” In Fig. 12 (a), the
model initially misidentified the coke can as a Fanta can. After
correction by the VLM, the model re-identified and located the
correct object. In Fig. 12 (b), the model accidentally knocks
over the Coke can during motion due to erroneous motion
planning. Subsequently, the model re-plans and successfully
achieves the grasp.

D. Long Horizon Object Manipulation Experiment
Fig. 13 illustrates the execution performance of our model

on long-horizon tasks. Through the VLM [100, 125], complex
instructions such as “making breakfast” and “cleaning up the
desktop” can be decomposed into sub-tasks. In the second
example, we deliberately chose complex and uncommon
objects as assets, such as “Aladdin’s lamp” and “puppets”,
but SOFAR is able to successfully complete all tasks.

(b) Pick the Coke can.

(a) Pick the Coke can.

Fig. 12: Close-loop execution of our SOFAR.

E. In the Wild Evaluation of Semantic Orientation
We provide a qualitative demonstration of the accuracy of

PointSO under in-the-wild conditions, as shown in Fig. 14,
where the predicted Semantic Orientation is marked in the
images. We obtained single-sided point clouds by segmenting
objects using Florence-2 [147] and SAM [65] and fed them
into PointSO. It can be observed that our model achieves good
performance across different views, objects, and instructions,
which proves the effectiveness and generalization of PointSO.



1. Upright the coffee cup 
and place it on the right.

Making breakfast. 2. Put the bread on the 
plate.

3. Put the broccoli into 
the spoon.

4. Grasp the handle of the 
knife and cut the bread.

2. Pick the Aladdin's lamp 
into the box.

1. Pick the shower head
into the box.

3. Pick the medicine into
the box.

4. Pick the glue into the
box.

5. Pick the puppet into the
box.

Fig. 13: Long-horizon object manipulation experiment of our SOFAR.

The “ ” direction of a .

The “ ” direction of a . 

The “ ” direction of a .

The “ ” direction of a . 

Fig. 14: In the wild evaluation of PointSO.

F. Cross-View Generalization

SOFAR gets point clouds in the world coordinate system
using an RGB-D camera to obtain grasping poses, and it is
not limited to a fixed camera perspective. In addition, PointSO
generates partial point clouds from different perspectives
through random camera views to serve as data augmentation
for training data, which also generalizes to camera perspectives
in the real world. Fig. 15 illustrates SOFAR’s generalization
capability for 6-DoF object manipulation across different
camera poses. It can be observed that whether it’s a front
view, side view, or ego view, SOFAR can successfully execute
the “upright the bottle” instruction.
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Fig. 15: Cross view generalization of our SOFAR.

G. Failure Case Distribution Analysis

Based on the failure cases from real-world experiments, we
conducted a quantitative analysis of the failure case distribution
for SOFAR, with the results shown in Fig. 16. It can be
observed that 31% of the failures originated from grasping
issues, including objects being too small, inability to generate
reasonable grasping poses, and instability after grasping leading
to sliding or dropping. Next, 23% were due to incorrect or
inaccurate Semantic Orientation prediction. For tasks such as
upright or upside - down, highly precise angle estimation (¡5°)
is required for smooth execution. Object analysis and detection
accounted for approximately 20% of the errors. The instability
of open-vocabulary detection modules like Florence2 [147] and
Grounding DINO [81] often led to incorrect detection of out-of-
distribution objects or object parts. In addition, since our Motion



TABLE X: Data scaling property of semantic orientation with
different training data scales evaluated on OrienText300K test
split. All experiments are conducted with PointSO-Base.

Data Scale 45° 30° 15° 5° Average

5% 57.03 46.09 39.84 27.34 42.58
10% 61.72 53.13 43.75 30.47 47.27
50% 76.56 72.66 66.41 56.25 67.97
100% 79.69 77.34 70.31 62.50 72.46

Planning did not take into account the working space range
of the robotic arm and potential collisions of the manipulated
object, occasional deadlocks and collisions occurred during
motion. Finally, there were issues with the Task Planning of the
VLM [100, 125]. For some complex Orientations, the VLM
occasionally failed to infer the required angles and directions
to complete the task. Employing a more powerful, thought-
enabled VLM [58] might alleviate such errors.

Fig. 16: Failure case distribution analysis of our SOFAR.

H. Ablation Study
1) Scaling Law: The scaling capability of models and data

is one of the most critical attributes today and a core feature
of foundation models [6]. We investigate the performance of
PointSO across different data scales, as illustrated in Table X.
We obtain the subset for OrienText300K from Objaverse-
LVIS, which consists of approximately 46,000 3D objects with
category annotations. The selection was based on the seven
criteria mentioned in the main text. Objects meeting all seven
criteria formed the strict subset, comprising around 15k objects.
When including objects without textures and those of lower
quality, the total increases to approximately 26k objects. It can
be seen that the increase in data volume is the most significant
factor driving the performance improvement of PointSO. It
can be anticipated that with further data expansion, such as
Objaverse-XL [21], PointSO will achieve better performance.

2) Cross-Modal Fusion Choices: We further conduct an
ablation study on the multi-modal fusion methods in PointSO,
testing commonly used feature fusion techniques such as cross-
attention, multiplication, addition, and concatenation, as shown
in Table XI. The results indicate that simple addition achieves
the best performance. This may be attributed to the fact that
instructions in the semantic domain are typically composed
of short phrases or sentences, and the text CLS token already
encodes sufficiently high-level semantic information.

TABLE XI: Ablation of multi-modal fusion in PointSO. All
the experiments are under the PointSO-Base variant.

Data Scale 45° 30° 15° 5° Average

Cross-attention 74.22 70.31 63.28 57.03 66.21
Multiplication 74.22 69.53 60.16 56.25 65.04
Addition 79.69 77.34 70.31 62.50 72.46
Concat 66.41 60.94 52.34 43.75 55.86

3) Open Vocabulary Object Detection Module: SOFAR uti-
lize a detection foundation model to localize the interacted
objects or parts, then generate masks with SAM [65]. Although
not the SOTA performance on the COCO benchmark, Florence-
2 [147] exhibits remarkable generalization in in-the-wild detec-
tion tasks, even in simulator scenarios. Table XII illustrates the
performance of various detection modules in Open6DOR [28]
Perception, where Florence-2 achieves the best results and
outperforms Grounding DINO [81] and YOLO-World [16].

APPENDIX C
ADDITIONAL IMPLEMENTATION DETAILS

A. Detail Real World Experiment Results

To fully demonstrate the generalization of SOFAR rather
than cherry-picking, we carefully design 60 different real-
world experimental tasks, covering more than 100 different
and diverse objects. Similar to the Open6DOR [28] benchmark
in the simulator, we divide these 60 tasks into three parts:
position-track, orientation-track, and the most challenging
comprehensive & 6-DoF-track. Each track is further divided
into simple and hard levels. The position-simple track includes
tasks related to front & back & left & right spatial relationships,
while the position-hard track includes tasks related to between,
center, and customized. The orientation-simple track includes
tasks related to the orientation of object parts, and the
orientation-hard track includes tasks related to whether the
object is upright or flipped (with very strict requirements for
angles in both upright and flipped cases). Comprehensive tasks
involve complex instruction understanding and long-horizon
tasks; 6-DoF tasks simultaneously include requirements for
both object position and orientation instructions. In Table XIII,
we present the complete task instructions, as well as the
performance metrics of SOFAR and the baseline. Due to the
large number of tasks, we performed each task three times. It
can be seen that SOFAR achieves the best performance in all
tracks, especially in the orientation-track and comprehensive &
6-DoF-track. We also show all the objects used in the real-world
experiments in Fig. 17, covering a wide range of commonly
and uncommonly used objects in daily life.

B. PointSO Model Details

For PointSO, we utilize FPS + KNN to perform patchify
and employ a small PointNet [104] as the patch encoder.
Subsequently, a standard Transformer encoder is adopted as
the backbone, followed by a single linear layer to map the
output to a three-dimensional vector space. All parameter



TABLE XII: Ablation study of open vocabulary detection modules on Open6DOR [28] perception tasks.

Method
Position Track Rotation Track 6-DoF Track

Time Cost (s)
Level 0 Level 1 Overall Level 0 Level 1 Level 2 Overall Position Rotation Overall

YOLO-World [16] 59.0 37.7 53.3 48.3 36.1 62.0 44.9 53.4 44.6 27.8 7.4s
Grounding DINO [81] 92.2 71.5 86.7 64.7 41.1 69.8 55.5 87.2 51.6 44.6 9.2s
Florence-2 [147] 96.0 81.5 93.0 68.6 42.2 70.1 57.0 92.7 52.7 48.7 8.5s

Fig. 17: The real-world assets used in our real-world
experiments. More than 100 diverse objects are used in our
6-DoF rearrangement experiments.

configurations follow prior work on point cloud representation
learning [29, 107, 109]. Detailed hyperparameter and model
configurations are provided in Tables XIV and XV.

C. SoFar-LLaVA Model Details

In addition to leveraging the extensive knowledge and
strong generalization capabilities of closed-source/open-source
pretrained VLMs [3, 97, 125] for zero-shot or in-context
learning, SOFAR can also enhance the planning performance
of open-source models through visual instruction tuning for
rapid fine-tuning. The pipeline of the model is illustrated in
Fig. 18. A JSON-formatted 6-DoF scene graph, processed
through a text tokenizer, along with the image refined by
SoM [151], is fed into an LLM (e.g., LLaMA [130, 131])
for supervised fine-tuning [79]. In the Open6DOR [28] task,
we supplement the training dataset with additional samples
retrieved and manually annotated from Objaverse [22], ensuring
alignment with the object categories in the original benchmark.
This dataset includes approximately 3,000 6-DoF object manip-
ulation instructions. Using this data, we construct dialogue-style
training data based on ChatGPT and train the SOFAR-LLaVA
model. The training hyperparameters are detailed in Table XV.
Similarly, we finetune PointSO on this training dataset and
achieve superior performance on the Open6DOR task.

D. ChatGPT API Costs

The knowledge of OrienText300K is derived from the
annotations of 3D modelers on Sketchfab, combined with Chat-

GPT’s filtering and comprehension capabilities. To generate
semantic direction annotations, we filter the 800K dataset of
Objaverse [22] and apply ChatGPT to approximately 350K of
the filtered data to generate semantic text-view index pairs. The
OpenAI official API was used for these calls, with the GPT-4o
version set to 2024-08-06 and the output format configured as
JSON. The total cost for debugging and execution amounted
to approximately $10K.

APPENDIX D
ADDITIONAL BENCHMARK STATISTIC ANALYSIS

A. 6-DoF SpatialBench Analysis

We conduct a statistical analysis of the manually constructed
6-DoF SpatialBench, with category comparisons and word
cloud visualizations shown in Fig. 19. We collect diverse image
data from the internet, encompassing scenes such as indoor,
outdoor, and natural landscapes. The questions may involve
one or multiple objects, with varying levels of uncertainty in
image resolution. Most importantly, we are the first to propose
a VQA benchmark for orientation understanding, focusing on
both quantitative and qualitative evaluation of orientation.

B. Open6DOR V2 Analysis

Open6DOR V2 builds upon Open6DOR V1 by removing
some incorrectly labeled data and integrating assets and
metrics into Libero, enabling closed-loop policy evaluation. The
detailed number of tasks is presented in Table XVI, comprising
over 4,500 tasks in total. Notably, we remove level 2 of the
position track in Open6DOR V1 [28] because it requires manual
inspection, which is not conducive to open-source use and
replication by the community. Besides, due to the randomness
of object drops in the scene, approximately 8% of the samples
already satisfy the evaluation metrics in their initial state.

APPENDIX E
ADDITIONAL RELATED WORKS

A. 3D Representation Learning

Research on 3D Representation Learning encompasses
various methods, including point-based [104, 105], voxel-
based [91], and multiview-based approaches [46, 120]. Point-
based methods [36, 111] have gained prominence in object
classification [133, 144] due to their sparsity yet geometry-
informative representation. On the other hand, voxel-based
methods [24, 108, 156] offer dense representation and transla-
tion invariance, leading to a remarkable performance in object
detection [19] and segmentation [2, 155]. The evolution of



TABLE XIII: Detailed zero-shot real-world 6-DoF rearrangement results.

Task CoPa [51] ReKep-Auto [56] SOFAR-LLaVA (Ours) SOFAR (Ours)

Positional Object Manipulation

Move the soccer ball to the right of the bread. 2/3 3/3 3/3 3/3
Place the doll to the right of the lemon. 3/3 3/3 3/3 3/3
Put the pliers on the right side of the soccer ball. 1/3 1/3 3/3 2/3
Move the pen to the right of the doll. 3/3 2/3 3/3 3/3
Place the carrot on the left of the croissant. 2/3 3/3 2/3 2/3
Move the avocado to the left of the baseball. 3/3 2/3 2/3 3/3
Pick the pepper and place it to the left of the charger. 1/3 2/3 2/3 2/3
Place the baseball on the left side of the mug. 3/3 2/3 2/3 3/3
Arrange the flower in front of the potato. 2/3 3/3 2/3 3/3
Put the volleyball in front of the knife. 3/3 3/3 3/3 3/3
Place the ice cream cone in front of the potato. 2/3 3/3 2/3 3/3
Move the bitter melon to the front of the forklift. 2/3 1/3 2/3 2/3
Place the orange at the back of the stapler. 3/3 2/3 3/3 3/3
Move the panda toy to the back of the shampoo bottle. 2/3 3/3 3/3 2/3
pick the pumpkin and place it behind the pomegranate. 3/3 2/3 1/3 2/3
Place the basketball at the back of the board wipe. 2/3 2/3 3/3 2/3
Put the apple inside the box. 3/3 2/3 3/3 3/3
Place the waffles on the center of the plate. 3/3 2/3 3/3 3/3
Move the hamburger into the bowl. 2/3 2/3 2/3 3/3
Pick the puppet and put it into the basket. 1/3 2/3 2/3 2/3
Drop the grape into the box. 2/3 3/3 3/3 2/3
Put the doll between the lemon and the USB. 2/3 2/3 2/3 3/3
Set the duck toy in the center of the cart, bowl, and camera. 2/3 1/3 2/3 2/3
Place the strawberry between the Coke bottle and the glue. 2/3 2/3 3/3 3/3
Put the pen behind the basketball and in front of the vase. 2/3 1/3 2/3 2/3
Total success rate 74.7% 72.0% 81.3% 85.3%

Orientational Object Manipulation

Turn the yellow head of the toy car to the right. 2/3 2/3 1/3 2/3
Adjust the knife handle so it points to the right. 2/3 1/3 2/3 2/3
Rotate the cap of the bottle towards the right. 2/3 2/3 2/3 2/3
Rotate the tip of the screwdriver to face the right. 0/3 0/3 1/3 1/3
Rotate the stem of the apple to the right. 0/3 1/3 1/3 2/3
Turn the front of the toy car to the left. 0/3 0/3 2/3 2/3
Rotate the cap of the bottle towards the left. 2/3 1/3 1/3 2/3
Adjust the pear’s stem to the right. 1/3 1/3 1/3 1/3
Turn the mug handle to the right. 1/3 1/3 2/3 2/3
Rotate the handle of the mug to towards right. 2/3 1/3 2/3 1/3
Rotate the box so the text side faces forward. 0/3 1/3 0/3 1/3
Adjust the USB port to point forward. 0/3 0/3 1/3 1/3
Set the bottle upright. 0/3 1/3 0/3 1/3
Place the coffee cup in an upright position. 1/3 1/3 2/3 2/3
Upright the statue of liberty 0/3 0/3 1/3 0/3
Stand the doll upright. 0/3 1/3 0/3 1/3
Right the Coke can. 0/3 0/3 1/3 1/3
Flip the bottle upside down. 0/3 0/3 0/3 1/3
Turn the coffee cup upside down. 0/3 0/3 1/3 1/3
Invert the shampoo bottle upside down. 0/3 0/3 0/3 0/3
Total success rate 21.7% 23.3% 35.0% 43.3%

Comprehensive 6-DoF Object Manipulation

Pull out a tissue. 3/3 3/3 2/3 3/3
Place the right bottle into the box and arrange it in a 3×3 pattern. 0/3 0/3 0/3 1/3
Take the tallest box and position it on the right side. 1/3 1/3 3/3 3/3
Grasp the error bottle and put it on the right side. 1/3 2/3 1/3 2/3
Take out the green test tube and place it between the two bottles. 2/3 2/3 3/3 3/3
Pack the objects on the table into the box one by one. 1/3 1/3 0/3 1/3
Rotate the loopy doll to face the yellow dragon doll 0/3 1/3 1/3 1/3
Right the fallen wine glass and arrange it neatly in a row. 0/3 0/3 0/3 0/3
Grasp the handle of the knife and cut the bread. 0/3 0/3 0/3 1/3
Pick the baseball into the cart and turn the cart to facing right. 0/3 0/3 1/3 2/3
Place the mug on the left of the ball and the handle turn right. 0/3 0/3 1/3 1/3
Aim the camera at the toy truck. 1/3 0/3 1/3 1/3
Rotate the flashlight to illuminate the loopy. 0/3 0/3 1/3 1/3
Put the pen into the pen container. 0/3 1/3 0/3 1/3
Pour out chips from the chips cylinder to the plate. 0/3 1/3 1/3 1/3
Total success rate 20.0% 26.7% 33.3% 48.9%
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Fig. 18: Pipeline of SOFAR-LLaVA, a fine-tuned vision language model based on visual instruction tuning.

TABLE XIV: Details of PointSO model variants. This table
format follows Dosovitskiy et al. [31].

Model CLIP Layers Hidden size MLP size Heads #Params

Small ViT-B/32 12 256 1024 4 11.4M
Base ViT-B/32 12 384 1536 6 19.0M
Large ViT-B/32 12 512 2048 8 43.6M

attention mechanisms [134, 164] has also contributed to the de-
velopment of effective representations for downstream tasks, as
exemplified by the emergence of 3D Transformers [36, 86, 89].
Notably, 3D self-supervised representation learning has gar-
nered significant attention in recent studies. PointContrast [148]
utilizes contrastive learning across different views to acquire
discriminative 3D scene representations. Innovations such as
Point-BERT [159] and Point-MAE [101] introduce masked
modeling [25, 47] pretraining into the 3D domain. ACT [29]
pioneers cross-modal geometry understanding through 2D or
language foundation models such as CLIP [115] or BERT [25].
Following ACT, RECON [107] further proposes a learning
paradigm that unifies generative and contrastive learning.
PPT [166] highlights the significance of positional encoding in
3D representation learning Additionally, leveraging foundation
vision-language models like CLIP [29, 115] has spurred the
exploration of a new direction in open-world 3D representation
learning. This line of work seeks to extend the applicability
and adaptability of 3D representations in diverse and open-
world/vocabulary scenarios [26, 27, 37, 87, 102, 163].

APPENDIX F
ADDITIONAL DISCUSSIONS

A. Relation to Affordance & 6-DoF Pose Estimation

Conceptually, this semantic orientation is a counterpart
of affordance [43, 44, 106, 118] but beyond, as SO and
affordance all present potential actions and interactions with
objects. However, SO also contains the spatial understanding of
intra-object part-level attributes more than affordance learning.
Compared to vanilla 6-DoF pose estimation, our proposed SO
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Fig. 19: 6-DoF SpatialBench statistics. (a) Statistical analysis
of the task type, question type, and object relation. (b) Word
cloud visualization.

combined with the 3-DoF translation understanding has the
same DoF completeness. The difference is, our proposed SO is
grounded by languages, making it useful for open-world manip-
ulation requiring complicated spatial reasoning [28, 57, 128].
In addition, our Semantic Orientation can be auto-labeled from
Internet 3D data that achieves higher scalability, introduced in
the next section.

B. Comparison to Concurrent Works

1) Comparison with ReKep [56]: Recently, ReKep has
succeeded in executing complex robotic tasks, such as long-
horizon manipulation, based on the relationships and constraints
between spatial key points. Its structural design offers many
insights that SOFAR can draw upon, yet it also presents several
issues: (1) Overly customized prompt engineering. ReKep
requires manually designed complex system prompts for each
task during inference. While this approach may be described
as “no training”, it cannot be considered a true zero-shot
transfer. In contrast, SOFAR achieves genuine zero-shot transfer
by eliminating the need for any human involvement during
inference; (2) Using constraints based solely on key points fails
to capture the full 6-DoF pose integrity of objects. For example,
in the “pouring water” task, merely bringing the spout of the
kettle close to the cup may lead to incorrect solutions, such as
the kettle overturning; (3) ReKep requires all key points to be
present in the first frame, and each step of the process—from



TABLE XV: Training recipes for PointSO and SOFAR-LLaVA.

PointSO SOFAR-LLaVA
Config Small Base Large Finetune SFT

optimizer AdamW AdamW AdamW AdamW AdamW
learning rate 5e-5 5e-5 2e-5 5e-5 2e-5
weight decay 5e-2 5e-2 5e-2 5e-2 0
learning rate scheduler cosine cosine cosine cosine cosine
training epochs 300 300 300 50 2
warmup epochs 10 10 10 5 0.03
batch size 256 256 256 256 128
drop path rate 0.2 0.2 0.2 0.2 -

number of points 10000 10000 10000 10000 -
number of point patches 512 512 512 512 -
point patch size 32 32 32 32 -

augmentation Rot&Part&Noise Rot&Part&Noise Rot&Part&Noise Rotation -

GPU device 8×H800 8×H800 8×H800 8×H800 8×H800

(a): Visual Observation (b): Scene Analysis (c): Motion Planning

(0.66, 0. 08, 0.91)

(0.69, 0.25, 0.94)

Fig. 20: An example of SOFAR how to finish “move near” task in SIMPLER [74].

mask extraction to feature dimensionality reduction, clustering,
and filtering—introduces additional hyperparameters.

2) Comparison with Orient Anything [139]: Recently, Ori-
ent Anything also highlighted the importance of orientation
in spatial perception and adopted a training data construction
approach similar to Our PointSO. Our primary distinction
lies in semantic orientation, which is language-conditioned
orientation. In contrast, Orient Anything is limited to learning
basic directions such as “front” and “top”. By aligning with
textual information, semantic orientation better enhances spatial
perception, understanding, and robotic manipulation.

C. Future Works

Future work includes further expanding the OrienText300K
with larger datasets like Objaverse-XL [21], enhancing the
performance of semantic orientation through self-supervised
learning and pretraining methods [29, 47, 107, 115], and demon-
strating its effectiveness in a broader range of robotic scenarios,
such as navigation [11], mobile manipulation [154], lifelong
learning [76], spatio-temporal reasoning [56, 84, 85, 152], hu-
manoid [14, 17, 48, 49], and human-robot interaction [82, 83].

APPENDIX G
ADDITIONAL VISUALIZATIONS

A. Robotic Manipulation

As shown in Fig. 20, we present a visualization of executing
a task named “move near”. According to the input image and
task instruction - “move blue plastic bottle near pepsi can”,
SOFAR can predict the center coordinate of the target object
(bottle) and relative target (pepsi can), and it would infer the
place coordinate and produce a series of grasp pose.

B. 6-DoF SpatialBench

To further evaluate 6-DoF spatial understanding, we construct
a 6-DoF SpatialBench. We present examples of question-answer
pairs from the 6-DoF SpatialBench, with quantitative and
qualitative questions shown in Figs. 21 and 22, respectively. The
benchmark we constructed is both challenging and practical,
potentially involving calculations based on the laws of motion,
such as “Assuming a moving speed of 0.5 m/s, how many
seconds would it take to walk from here to the white flower?”
Moreover, it covers a wide range of spatially relevant scenarios
across both indoor and outdoor environments.



TABLE XVI: Statistics of Open6DOR V2 Benchmark. The entire benchmark comprises three independent tracks, each
featuring diverse tasks with careful annotations. The tasks are divided into different levels based on instruction categories, with
statistics demonstrated above.

Track Position-track Rotation-track 6-DoF-track Totel

Level Level 0 Level 1 Level 0 Level 1 Level 2 - -

Task Catog. Left Right Top Behind Front Between Center Geometric Directional Semantic - -

Task Stat. 296 266 209 297 278 193 159 318 367 134 1810 4535

Benchmark Stat. 1698 1027 1810 4535

C. System Prompts

Prompt engineering significantly enhances ChatGPT’s ca-
pabilities. The model’s understanding and reasoning abilities
can be greatly improved by leveraging techniques such as
Chain-of-Thought [140] and In-Context Learning [9]. Figs. 23
and 24 illustrate the system prompt we used in constructing
OrienText300K. Fig. 25, Fig. 26, and Fig. 27 illustrate the
system prompt we used when evaluating SOFAR on Open6DOR
(simulation), object manipulation (both simulation and real
worlds), and VQA, respectively. Note that different from
previous methods [54, 56], SOFAR does not require complicated
in-context examples.



[Task Type: Position Question Type: Absolute]

[Question]: Count from right to left and start at 1, which two of the 
red flower pots are the group of people in the middle of?

[A]: "4 and 5"
[B]: "2 and 3"
[C]: "1 and 2"
[D]: "3 and 4”

[Answer]: C

[Task Type: Orientation Question Type: Absolute]

[Question]: If you want to align the orientations of the two chairs, 
what is the minimum angle you need to rotate the chair on the right?

[A]: "75°"
[B]: "55°"
[C]: "35°"
[D]: "15°"

[Answer]: C

[Task Type: Position Question Type: Absolute]

[Question]: Assuming a moving speed of 0.5 m/s, how many seconds 
would it take to walk from here to the white flower?

[A]: "3s"
[B]: "5s"
[C]: "7s"
[D]: "10s"

[Answer]: B

[Task Type: Orientation Question Type: Absolute]

[Question]: How many white chairs are facing the window?

[A]: "2"
[B]: "4"
[C]: "1"
[D]: "3"

[Answer]: A

Fig. 21: Visualization example of 6-DoF SpatialBench data samples.



[Task Type: Position Question Type: Relative]

[Question]: Which side of the steps is narrower?

[A]: "the left"
[B]: "the right"
[C]: "the middle"
[D]: "the same"

[Answer]: B

[Task Type: Orientation Question Type: Relative]

[Question]: Which direction does the handle of the cup in the upper 
right corner point to?

[A]: "left"
[B]: "right"
[C]: "front"
[D]: "back"

[Answer]: A

[Task Type: Position Question Type: Relative]

[Question]: How many compartments are there in the heart-shaped 
grid for storing books?

[A]: "5"
[B]: "3"
[C]: "6"
[D]: "4"

[Answer]: A

[Task Type: Orientation Question Type: Relative]

[Question]: If you are a driver driving a car on the road from near to 
far, which direction will you turn to?

[A]: "first turn left and then left"
[B]: "first turn right and then left"
[C]: "first turn left and then right"
[D]: "first turn right and then right"

[Answer]: C

Fig. 22: Visualization example of 6-DoF SpatialBench data samples.



[System Prompt]

You are an expert AI assistant for 3D object understanding.
The user imported a potentially uncalibrated 3D model into Blender and placed cameras in front, back, left, 
right, top, and bottom to render images, labeled from 1 to 6.
You are required to infer the entire 3D object based on these images and determine its attributes.

Your task is to assess the following attributes for each 3D model and respond with "true" or "false" for each 
question:
Axis Alignment: Determine whether the object is horizontally and vertically aligned across all views. Key 
features (e.g., edges, handles, or other distinct elements) of the object must be perpendicular or parallel to 
the cameras. Respond "true" if all views are aligned with the axis, "false" if not.
Scene or Collection: Determine whether the 3D model represents a 3D scene or a collection of independent 
objects (e.g. a room, outdoor scene, or multiple independent objects). Respond with "true" if it does, and 
"false" if it only contains a single object.
White: Determine whether the 3D model only has single white or gray colors, and lacks any other colors. 
Respond with "true" if it is white or gray, and "false" if it has any other colors (e.g., black or yellow).
Ground: Determine whether the 3D model includes a ground plane for auxiliary visualization. Respond with 
"true" if it does, and "false" if it only has the object.
High Quality: Determine whether the 3D model is a refined, well-constructed mesh without defects, such as 
point noise or streaking artifacts commonly found in low-quality RGBD scans. Respond with "true" if the 
mesh is clean and smooth, and "false" if it contains noise, roughness, or visual artifacts.
Distinguishable Views: Determine whether the 3D model has distinguishable views, or has clear semantic 
information in certain views (e.g., some 3D object has clear front, top directions). Respond with "true" if the 
6 views show noticeable differences or have clear semantic information in certain views, and "false" if the 
views appear identical and there is no obvious semantic information on all views.
Reasonable Object: Determine whether the 3D model represents a common, recognizable, meaningful object. 
Respond with "true" if it is, and "false" if it is abstract, confused, or unrecognizable.

You need to first analyze the 3D object detail, and then output its correct attributes.

[User] Standard Views:

Oblique Views: (Only for reference)

Fig. 23: The system prompt of ChatGPT-4o used for filtering Objaverse data.



[System Prompt]

You are a visual assistant specializing in interpreting 3D objects from multiple perspectives. 
You will receive 6 images of a 3D object from standard views (front, back, left, right, top, bottom), presented 
in random order. Typically, image 5 corresponds to the top view. 
Your task is to generate an instruction-index pair that identifies a meaningful semantic direction for the 
object, based on its function or commonly understood orientation. 
The instruction can be a verb, noun, adjective, or phrase, and must clearly relate to the object's function or 
orientation in everyday use. 
Ensure the direction is clear, objective, and uniquely meaningful.

Examples:
For a pen, the instruction might be "pen cap", and the index is the image with the pen cap facing the camera.
For a cup, the instruction might be "handle", and the index is the image with the cup handle facing the 
camera.
For a phone, the instruction might be "screen", and the index is the image with the phone screen facing the 
camera.
For a table, the instruction might be "on", and the index is the image with the tabletop facing the camera.
For a power outlet, the instruction might be "plug-in". Based on common knowledge, its semantic 
orientation is perpendicular to the power outlet's plane, along the direction of the power outlet's slots, and 
therefore, the index is the image with the power outlet pinholes' plane facing the camera.
For a desk, the instruction might be "open the drawer". Based on common sense, the robot would need to 
pull the drawer open. The semantic direction corresponds to the direction of the drawer's extension, hence 
the index is the image with the drawer handle facing the camera.
For a microphone, the instruction might be "speak", the semantic orientation is along the direction of the 
microphone's head, and therefore, the index is the image with the microphone head facing the camera.

You need to first analyze the category, attributes, characteristics, state, and usage of this 3D object in detail, 
and then output a pair of instructions and index.
When it is challenging to generate complex instructions, or when multiple views of the object are too similar 
to produce a unique instruction, you can use simpler instructions, such as "top" or "front".
The output format is as follows:
Analysis: "..."
Instruction: "..." 
Index: 1-6

Standard Views:
[User]
Oblique Views: (Only for reference)

Fig. 24: The system prompt of ChatGPT-4o used for generating Semantic Direction-Index pairs.



[Parsing System Prompt]

You are an assistant specialized in interpreting tabletop pick-and-place instructions for robotic manipulation. 
Your main goals are to identify relevant objects and analyze necessary orientations.

Key Objectives
1. Object Identification: Identify and list the objects mentioned in the instruction. Exclude the table itself.
2. Orientation Analysis: For the object needs to pick&place, determine any required orientation crucial to the task‘s 
success. If orientation isn’t specified, leave the orientation list empty.
3. Direction Terms: Limit directional terms to these two categories:

- Object Parts: e.g., “handle”, “pen cap”, “top”
- Interaction Actions: e.g., “pour out”, “open”
Terms must be single words, not phrases or sentences.
You must analysis both the instruction and the image to determine the object‘s direction attributes.

4. Disambiguation of Identification: If instructions reference vague objects (e.g., “else object”, “all objects"), use visual
information to clarify.
5. Disambiguation of Orientation: If the instructions describe complex rotation like "upright", you can interpret them as 
ensuring an object's relevant part is aligned with the z-axis (e.g., "bottle cap", "top").

This disambiguation utilizes world knowledge, as we define the far-to-near direction as the x-axis, the left-to-right 
direction as the y-axis, and the bottom-to-top direction as the z-axis. 

Similarly, place an object to point forward means that the "top" of the object is oriented along the x-axis.

[Reasoning System Prompt]

You are an assistant for spatial intelligence and robotic operations, specializing in pick-and-place tasks. 
Your role is to process robotic commands to pick a object and place it in a specific location.

Input Context:
1. Pick & Place Command: A directive specifying which object to pick and where to place it, including any specific pose 
requirements.
2. picked_object_info: A dictionary with the picked object's position in the world coordinate system.

- Coordinates: Object center and bounding box in 3D (x, y, z), where:
-- x: Extends from far to near. Objects closer to the observer have larger x-values
-- y: Extends from left to right. Objects further to the right have larger y-values
-- z: Extends upward. Objects positioned higher have larger z-values

3. other_objects_info: A list of dictionaries with the position of other objects in the scene.
- Coordinates: Object center and bounding box in 3D (x, y, z), same in the world coordinate system.

Objective:
1. Generate target placement position: Based on the spatial location descriptions provided in the instructions (e.g., 
'behind,' 'between,' 'left,' etc.), as well as each object's center and bounding box (bbox), analyze and calculate the 
appropriate placement for the picked object.

- front indicates positioning the object at an x-coordinate slightly larger than the reference object's x maximum.
- right indicates positioning the object at a y-coordinate slightly larger than the reference object's y maximum.
- between indicates positioning the object at the midpoint between two reference objects.

[User]

Place the knife behind the clipboard on the table. 
And rotate the handle of the knife to left.

Fig. 25: The system prompt of Open6DOR tasks.



[Parsing System Prompt]

You are a spatially intelligent AI specializing in interpreting objects, spatial directions, and interaction semantics for tasks
involving spatial understanding or robotic manipulation. 
The user will input an image and an instruction. Analyze user instruction and provide:

Objects: List involved objects using concise nouns or phrases, without ant adjectives (e.g, the "top drawer" should be 
listed as "drawer").
Semantic Directions: Identify essential spatial or action-related terms, categorized as:
- Object Parts: e.g., "handle", "lid", "top".
- Action Terms: e.g., "pour out", "open".

Guidelines:
Focus on key spatial or action contexts for task completion.
Use implicit spatial conventions (Certain user instructions need to satisfy implicit constraints related to position and 
orientation.) if practical.
Avoid numeric values or absolute positions.
Only specify object-centric pose relationships, not inter-object positions (such as left, right, front, behind).

[Reasoning System Prompt]

You are a robotic spatial intelligence and manipulation assistant, specialized in interpreting commands and scene 
structures for robotic object manipulation. 
Your task is to analyze the user's directive and scene graph to guide the robot in identifying objects, computing spatial 
transformations, and producing step-by-step guidance for manipulation tasks.

Input Context:
1. Manipulation Command: A directive specifying which object to pick and where to place it, including any specific pose 
requirements.
2. Scene Graph: A dictionary with the scene objects' position and orientation in the world coordinate system.

- Coordinates: Object center and bounding box in 3D (x, y, z), where:
-- x: Extends from near to far. Objects further to the observer have larger x-values
-- y: Extends from right to left. Objects further to the left have larger y-values
-- z: Extends upward. Objects positioned higher have larger z-values

- Orientations of the object's parts (e.g., 'screen', 'handle') in 3D space.
-- (1, 0, 0): Points forward along the x-axis
-- (0, 1, 0): Points left along the y-axis
-- (0, 0, 1): Points upward along the z-axis

Objective: To process each command, follow these steps:

Target Identification: Identify the object to be picked up or manipulated.
Final Position: Specify the intended final position of the object after manipulation, in terms of x, y, z coordinates.
Orientation Mapping: For each semantic direction provided, compute the final orientation of the manipulated object in 
the world coordinate system.

[User]

Open top drawer.

Fig. 26: The system prompt of general manipulation tasks.



[Parsing System Prompt]

You are a spatially intelligent, embodied AI brain specialized in spatial and interactive understanding, tasked with 
interpreting objects, spatial directions, and relevant interaction semantics in response to the user's queries. The user 
provides commands or questions related to spatial intelligence or robotic manipulation, often with an image input.
Your job is to analyze the given instruction and provide a list of objects involved in the task, alongside semantic 
orientations needed to complete the instruction effectively. You should focus on the key interaction directions required 
for successful completion without specifying numeric values or absolute positions, as these will be calculated by an 
expert model later.

Guidelines:
1. Focus on Semantic Directions: Define directions concisely using single terms that fall into one of these two categories:

- Object Parts (e.g., "handle", "screen", "top")
- Action-Oriented Terms (e.g., "pour out", "plug-in", "open")

2. Optimize for Simplicity: Choose terms that provide essential spatial or action context while remaining simple and 
intuitive for the model. Use only the most relevant directions or parts needed to complete the user's task.
3. Analysis: When necessary, use implicit spatial conventions where appropriate to ensure a practical output for the 
model.
4. Only object-centric pose related: Distinguish which object relationships are determined by position (such as left, right, 
front, behind) and which are determined by object pose, and we only focus on the direction of object centric pose.

[Reasoning System Prompt]

You are a spatial intelligence assistant specialized in understanding 3D visual scenes and answering spatial reasoning 
questions. 

The user will provide:
Image: An image of the scene.
Question: User question about the spatial relationships between objects in the scene.
Scene Graph: Additional information about the objects, including:

- id: object ID
- object name: object category
- center: 3D coordinates of the object's center
- bounding box: 3D bounding box coordinates
- orientation: object directions in 3D space

All the coordinates are in the camera coordinate system, where:
- x-axis: Extends from left to right in the image, objects located right have larger x-values
- y-axis: Extends from bottom to top in the image, objects located at top of the image have larger y-values
- z-axis: Extends from near to far in the image, objects located further away have larger z-values

You need to focus mainly on the image, the scene graph information is just for reference.
Avoid providing answers such as "cannot determine." Instead, provide the most likely answer based on the information 
available.

[User]

How far between the left bottle and the right bottle?

Fig. 27: The system prompt of visual-question-answering tasks.
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